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Abstract 

We present various approximations for the angular distribution of particles emerg- 
ing from an optically thick, purely isotropically scattering region into a vacuum. Our 
motivation is to use such a distribution for the Fleck-Canfield random walk method 
[l] for implicit Monte Carlo (IMC) [2] ra la ion transport problems. We demonstrate d’ t 
that the cosine distribution recommended in the original random walk paper [l] is a 
poor approximation to the angular distribution predicted by transport theory. Then 
we examine other approximations that more closely match the transport angular dis- 
tribution. 

1 Introduction 

In the Fleck-Canfield random walk algorithm for IMC radiation transport problems, in op- 
tically thick, highly scattering media, Monte Carlo transport is suspended and diffusion 
theory is used to transport particles. In this algorithm, the largest sphere that will fit in 
a given zone, centered at the current particle location, is inscribed. The classical diffusion 
equation is solved and probabilities are computed to determine if the particle escapes from 
the sphere. If it does escape, then the cosine of the polar angle (henceforth referred to as 
the angle) about the local outward normal to the location on the surface of the sphere from 
which the particle emerges must be computed. Fleck and Canfield recommend the use of a 
cosine distribution. As we show, this is not a good approximation. 



We show a simple method of deriving a more accurate angular distribution. By using two 
approximations for the extrapolated endpoint boundary condition, we generate two similar 
distributions. We also report results from numerical experiments performed by Bateson [3]. 
We see that Bateson’s result matches that obtained using the diffusion extrapolation distance 
and that it is a very good approximation to transport theory. 

This paper is organized in the following manner. We examine the transport angular 

distribution as derived by Chandrasekhar [4] in Section 2. We present the cosine distribution 
in Section 3. In Section 4, we derive two approximations using the extrapolated endpoint 
boundary condition. Bateson’s results are presented in Section 5. In Section 6 we compare 
all of the distributions presented. We draw some conclusions in Section 7. 

2 The Transport Angular Distribution 

The problem of determining the angular distribution of particles emerging from a diffusive 
spherical region in the Fleck-Canfield random walk algorithm is analogous to the law of 
darkening in astrophysics [4] and the Milne problem in nuclear engineering [5] under certain 
assumptions. The law of darkening and Milne problems assume a semi-infinite half-space, 
with no incident flux on a vacuum boundary at z = 0 and some source at infinity. For 
the Fleck-Canfield situation, if the sphere is optically thick so that the assumption that 
diffusion theory holds (that the specific intensity is nearly isotropic [6]) is reasonable, then 
it approaches the law of darkening/Milne problem. 

The angular distribution we seek is a probability density function (pdf) [7] such that: 

PNP) = cod ~40, d, o<pg. (1) 

For the law of darkening, for a purely isotropically scattering medium, Chandrasekhar ob- 
tained an analytic transport result of 

N(p) is the Chandrasekhar H-function defined as 

where the pi’s are the zeros of the Legendre polynomial PZn(~) and ~?j’s are the non-negative 
roots of some characteristic equation of form 
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and 9(p) is an even polynomial in p that satisfies 

1 
J’ f&L&(p) < 0.5. 
0 

(5) 

The H-function can be approximated as the solution of the following integral equation 

For a purely isotropically scattering medium 

a+) = 0.5. (7) 

Values of the H-function were determined numerically and tabulated in Table XI of Reference 
4. 

We also have the result [4] 

so we see that the pdf, Equation 2, is normalized. 

3 The Cosine Distribution 

The angular distribution of particles emitted from an isotropic surface source is described 
by a cosine distribution. The cosine pdf is 

Pa4 = 2b (9) 

We note that this is not an approximation of the transport result. This distribution arises 
from a different physical problem than the one we seek. Thus, as we show later in this paper, 
the cosine distribution is not accurate and should not be used in the Fleck-Canfield random 
walk algorithm. 
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4 Two Approximations 

In this section, we show two approximations to the transport angular distribution. These 
were derived by Larsen [7]. We begin by invoking the Pi approximation 

where 

and 
1 

I,(x) = 
s 

&4(x, CL). 

-1 

Using Fick’s law 

II(X) = -$g, 

we substitute 1,(x) into Equation 10 to obtain 

I(x,p) = go(x) - fx2. 

(10) 

(11) 

(12) 

(13) 

(14) 

In diffusion theory, a vacuum boundary can be modeled by setting 10 to zero at an 
extrapolated boundary [8] 

Io(xb + d) = 0, (15) 

where xb is the physical boundary and d is the extrapolation distance. If we expand Equation 
15 in a Taylor series we obtain 

Io(xb) + dv = 0. 06) 

Setting zb = 0, solving for the derivative term in Equation 16 and substituting this into 
Equation 14, which is evaluated at x = 0, we have 

I(0, p) = go(o) + ~~io(O). (17) 
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If we multiply Equation 17 by p, we obtain 

Comparing this to Equation 1, we write the pdf as 

pdf =++$p2). 

This pdf, as is the case for all pdf’s, must integrate to unity. We do this to obtain an 
expression for a 

Now our pdf is 

pdf= p+-p2 
( od ) (i+&)-” (21) 

Our two approximations concern the value of d, the extrapolation distance. We call the 
Marshak approximation one in which 

d=& 

yields the Marshak boundary condition for a vacuum boundary [6]. Thus, 

pdf = p i- ;p2 

We call the Mime approximation one in which 

0.7104 d=------- 
0 

is the Mime extrapolation distance [5]. So, 

pdf = 1.03176~ + 1.45236~~. 

5 Bateson’s Results 

(22) 

(23) 

(24 

(25) 

Bateson [3] considered a finite, purely isotropically scattering slab, with vacuum boundaries 
on the left and right, in which particles were emitted isotropically from the center. He ran 
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Monte Carlo simulations and examined the angular distribution of particles that escaped 
an optically thick slab at late times. Thus he considered particles that had achieved an 
asymptotic distribution. He plotted his results and used a curve fit to obtain 

pdf = p i- f p”. (26) 

This is the same pdf that was derived in Section 4 for the Marshak distribution, Equation 
23. Since a curve fit would not yield exactly 1 and 1.5 for the coefficients of p and p2 
respectively, it is assumed that Bateson obtained coefficients close to these values and then 
realized that rounding the values yielded a normalized distribution. 

6 Comparison 

(27) 

Now we compare the four distributions considered: Chandrasekhar H-function, cosine, Mar- 
shak, and Milne. Looking at Figure 1, we immediately notice how poor the cosine approx- 
imation is. We also note how closely the Chandrasekhar H-function, Marshak, and Milne 
distributions match. 

Let us examine the average angle of each distribution, defined as 

i dp /-wtf(,4 
p= O1 

S&P@ (4 
0 

Values for the various distributions are shown in Table 1. 

Again, we see that the cosine distribution is not accurate and the other distributions 
yield similar results. From close examination of Figure 1 and from the average angles in 
Table 1, it is apparent that the Marshak result is closer to the transport distribution (the 
Chandrasekhar H-function) than the Milne result. This was not anticipated. 

First, we must acknowledge that the Chandrasekhar result is a numerical solution of 
an approximation, Equation 6, to the H-function that is obtained from transport theory, 
Equation 3. However, an exact analytical expression can be obtained for the integral of the 
H-function [4] 

1 

s 
dd%-4 = ;[I - 

0 

(1 - a01 7 :I. 
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In our case of purely isotropic scattering, we have GJO = 1 and 

As shown in Chapter V, Table XII of Reference 4, the numerical procedure used yields a result 
of 1.9999 for the integral of the H-function. Thus, the tabulated H-function results are very 
accurate, and the Chandrasekhar distribution can be considered a very good representation 
of the transport distribution. 

Since the Milne extrapolation distance is more accurate than the Marshak distance, 
we would expect that the Milne distribution would be more accurate than the Marshak 
distribution. We would also expect that Bateson’s Monte Carlo simulations would match 
the Milne rather than the Marshak results. Nevertheless, it is clear that the Marshak angular 
distribution is a more accurate representation of the transport distribution than the Milne 
approximation. 

7 Conclusion 

We have examined various expressions for the angular distribution of particles emerging from 
a diffusive region. The motivation for considering such problems was to find an accurate 
expression for the angular distribution of Monte Carlo particles that escape from a diffusive 
sphere in the Fleck-Canfield random walk algorithm for IMC radiation transport. If the 
sphere is optically thick and the scattering ratio is near unity, this problem is analogous to 
the law of darkening/Milne problem for isotropic scattering. 

Chandrasekhar [4] has derived the transport result for the angular distribution. Ideally, 
we would like to use this in the Fleck-Canfield method, but the resulting pdf involves a 
function, the H-function, that does not have an analytical solution. Although it has been 
tabulated, we seek an analytical expression that is accurate and can be readily inverted for 
use in the Fleck-Canfield method. 

We demonstrated that the Marshak distribution is an accurate representation of the 
transport distribution. Use in the Fleck-Canfield method requires that we invert the pdf, 
Equation 23. Although it involves solving a cubic equation, this can be done quickly with the 
Newton-Raphson method [9]. The Marshak result was obtained analytically by Larsen [7] 
using the “PI” approximation and the Marshak boundary condition for a vacuum boundary. 
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Interestingly, this yielded the same result as that obtained by Bateson [3] via Monte Carlo 
simulations. 

We conclude that the Marshak angular distribution, Equation 23, should be used in the 
Fleck-Canfield method instead of the cosine distribution as recommended in Reference 1. 
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Figure 1: Angular Distributions. 

Distribution P 
Chandrasekhar 0.71045 

Marshak 0.70833 
Milne 0.70701 
cosine 0.66667 

Table 1: Average Angles. 
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